Possible Solutions

Number of Rooms (Input)	Process	Number of Walls (Output)
1	1×4	4
2	2×4	8
3	3×4	12
4	4×4	16
6	6×4	24
10	10×4	40

Number of Rooms (Input)	1	2	3	4	6	10
Process	1×4	2×4	3×4	4×4	6×4	10×4
Number of Walls (Output)	4	8	12	16	24	40

- The number of rooms times 4 equals the number of walls.
- The number of walls divided by 4 equals the number of rooms.
- Number of rooms $\times 4=$ number of walls
- Number of walls $\div 4=$ number of rooms
- For every 1 room, there are 4 walls.
- For every 4 walls, there is 1 room.
- There is an additive relationship between the related number pairs. As the number of rooms increase by $1(+1)$, the number of walls increase by $4(+4)$.
- There is a multiplicative relationship of $x 4$ between the number of rooms and the number of walls.

